Sunday, November 27, 2016

SHG Radio Show, Episode 333

Welcome to this week's edition of Subterranean Homesick Grooves™, a weekly electronica-based radio show presented originally on CHMA FM 106.9 at Mount Allison University in Atlantic Canada (but expanded to distribution on other terrestrial and internet-based radio stations), and also distributed as a global podcast through iTunes. The show is normally programmed and mixed by Jonathan Clark (as DJ Bolivia), although some weeks very occasionally feature guest mixes by other Canadian DJ's. The show encompasses many sub-genres within the realm of electronic dance music, but the main focus is definitely on tech-house and techno, and a small amount of progressive, trance, & minimal. Due to the mix of styles, you may hear combinations of tracks that wouldn't normally be featured together in a DJ's live set, but this show is intended to feature various styles of electronic/dance music. Liner notes for this episode (SHG 333) can be seen below.

Para la información en español, vaya aquí.

I should point out that when I make these shows, I mean for them to be a journey. I pay a lot of attention to the programming, and to the development of energy levels. If you're a first-time listener, you might think that the start of the show is quite tame, on the slower and "deeper" side of house or techno. However, give it time. Pay attention to how the styles change throughout the mix, and how the energy builds. Sometimes, I'll be very erratic and jump around between several genres, just for fun. Sometimes, I'll do a particularly dark show, with a heavy emphasis on techno. Most of the time however, you'll find a mix of mostly deep house or minimal or deep techno for the first third of the mix, building into a more upbeat section of tech-house through the middle, perhaps building up to some energetic tracks at the end, which often trespass into the realm of more contemporary house. Don't treat the show as a collection of individual tracks ... think of it as a cohesive experience; an hour-long aural journey of reflection and beats.

By the way, if you're looking for DJ mixes in styles other than progressive/tech-house, check out www.djbolivia.ca/mixes.html. That page has a number of mainstream/top40 dance mixes (the "Workout Mix" series), as well as some deep house, drum and bass, and other styles.




Here's our Podcast Feed to paste into iTunes or any other podcatcher:
http://feeds.feedburner.com/shg

Older episodes of the show are not directly available from our main servers anymore, to conserve space for more recent episodes. However, all older episodes have been posted individually on SoundCloud, and also in archives of 25 episodes apiece (convenient for bulk downloading) from DJ Bolivia's Public Dropbox folder. That Dropbox link also has folders for individual tracks and remixes, project files and stem collections for producers who want to make their own remixes, videos, and other material. You don't even need to have a Dropbox account to download files from it.


Here’s a link so you can listen to the show or download it from SoundCloud:



Here are Track Listings for episode 333:

01. Solee - Marcheninsel (Original Mix).
02. Cele - The Game (Original Mix).
03. Diatonik & Hans Seance - Almost There (Original Mix).
04. Matt Sassari - Freakin (Metodi Hristov Remix).
05. Ralph Sliwinski & Syntec - Jolly Fellow (Original Mix).
06. Liva K - Delay (Original Mix).
07. Nacho JM & David Cueto - Swamp Monster (Original Mix).
08. Camilo Diaz - People (Original Mix).
09. Klang & Kuenstler - Rise Against The Arp (Original Mix).
10. Carlos A & Oliver K - Bassline Play (Original Mix).
11. DJ PP & Gabriel Rocha - Old Class (Mike Vale Remix).
12. Anggara Bintang & Daniel Harris - Damnation (Original Mix).





Here are links to either personal websites, Facebook pages, or [usually] the SoundCloud pages for a few of the original artists and remixers/producers listed above.



Solee (Germany)
Diatonik (India)
Hans Seance (India)
Matt Sassari (France)
Metodi Hristov (Bulgaria)
Ralph Sliwinski (Germany)
Syntec (Germany)
Liva K (United Kingdom)
David Cueto (Spain)
Camilo Diaz (Colombia)
Klang & Kuenstler (Germany)
Oliver K (Switzerland)
DJ PP (Uruguay)
Mike Vale (Slovenia)



Subterranean Homesick Grooves is a weekly specialty EDM music show with a basic weekly audience base of about 1500 listeners per week through podcasting, direct downloads, and distribution on a small number of internet-based radio networks, plus another hundred or so listeners through SoundCloud, and an unknown number of listeners through terrestrial FM broadcast. If you're a radio station programming director, and would like to add Subterranean Homesick Grooves to your regular programming lineup, contact djbolivia@gmail.com for details. We currently release SHG as an advance download to a number of stations globally on a weekly basis (at no charge), and we welcome inquiries from additional outlets.

Go to the Mix Downloads page on the main DJ Bolivia website if you'd like to check out a number of our older shows, or visit our SoundCloud page for individual tracks and remixes. And if you're interested in learning more about DJ'ing or music production, check out Jonathan Clark's extensive and very popular series of YouTube tutorials. There's a full & organized index of all the videos at:
djbolivia.ca/videos.html

We also have a file containing complete track listings from all of DJ Bolivia's radio shows, studio mixes, and live sets. The PDF version can be viewed from within your browser by clicking directly. Both the PDF and the Excel versions can be downloaded by right-clicking and choosing the "save link as" option:

View as PDF file: http://www.djbolivia.ca/complete_track_history_djbolivia.pdf
Download Excel file: http://www.djbolivia.ca/complete_track_history_djbolivia.xlsx









Follow Jonathan Clark on other sites:
        Twitter: twitter.com/djbolivia
        SoundCloud: soundcloud.com/djbolivia
        YouTube: youtube.com/djbolivia
        Facebook: facebook.com/djbolivia
        Main Site: www.djbolivia.ca
        About.Me: about.me/djbolivia
        Music Blog: djbolivia.blogspot.ca
        MixCloud: mixcloud.com/djbolivia
        DropBox: djbolivia.ca/dropbox




Abbreviations & Acronyms for Aviation (Canadian PPL)

This version of my “Abbreviations & Acronyms” study notes is from January 1st, 2017.  I’ll update this document any time I find the need to make any changes, and as I continue to progress through additional training.

I am sharing these study notes for anyone else who is taking their PPL in Canada.  These aren’t intended as a replacement for proper training.  I’m only sharing these notes as a supplement covering many of the key points that I decided that I really needed to memorize while going through my own PPL studies.  The information in this specific set of notes comes from just two sources:  the Aeronautical Information Manual, and the CFS.

Please note that while I have made every effort to ensure that all of the information in these notes is accurate, you should verify everything here against what you’ve learned in your own study programs.  I (Jonathan Clark) shall not assume any liability for errors or omissions in these notes, and your official pilot training should always supersede any information presented herein.  As the Canadian PPL curriculum is updated occasionally, I recommend that if you want to be 100% certain that everything in this set of study notes is correct, you should print a copy and ask your instructor to review these notes with you.

To download PDF or audio MP3 versions of these notes, visit:  http://djbolivia.ca/aviation.html




Let’s Get Started – Ground School: Abbreviations & Acronyms

One of the more daunting challenges for student pilots is to start learning the exhaustive lists of abbreviations and acronyms that relate to both aviation and meteorology.  In the modern digital age, technology means that restrictions on the length of communications are no longer a significant constraint.  One might think that more written weather and meteorology reports, and other types of written documents, could revert to plain English rather than using so many shortened forms.  However, until this happens, we need to memorize exhaustive lists of abbreviations and acronyms.

This set of study notes contains three separate study lists.  The first is the list of general abbreviations and acronyms taken from the front of the Canada Flight Supplement (CFS).  This is the easiest list to memorize, as most of the items are things that you’ll come across in a study of general aviation.  I omitted some of the most basic commonsense abbreviations from this list, such as those for days of the week, months of the year, compass directions, and Canadian provinces.

The second list summarizes abbreviations and acronyms that can be used in Canadian NOTAMS.  It is important to understand the meaning of these items for your flight exams.  This list also comes from the front of the CFS.  On a positive note, if you’re interpreting a NOTAM and you can’t remember what something means, you can just look it up in the CFS while you’re working on your pre-flight planning.  Of course, knowing most of this information by memory is beneficial, because you don’t get a copy of the CFS during your flight exam.

The final list is a summary list of some of the most commonly used abbreviations and acronyms that you’ll find in aviation forecasts, and should be considered to be a bare minimum of the abbreviations that you must memorize relating to meteorology and weather forecasting.  To be clear, there are MANY more abbreviations and acronyms than the ones listed here.  A full list can be found in the Manual of Word Abbreviations (MANAB), found on the Environment Canada website.  However, that publication contains almost two hundred pages of abbreviations, which is beyond the scope of what can be presented here.

If an acronym or abbreviation was included in one of these lists, I usually omitted it from subsequent lists, in order to minimize repetition.

Let’s start our review …


General Aviation Abbreviations & Acronyms

AAE – above aerodrome elevation
AB INITIO – elementary
ABM – abeam
ACA – Arctic control area
ACN – aircraft classification number
A/D – aerodrome
ADCUS – advise customs
ADDN – addition, additional
ADF – automatic direction finding
ADS – automatic dependent surveillance
ADVS – advised, advise
ADVSY – advisory
AFB – air force base
A/G – air/ground
ALTN – alternate
AMSCR – aircraft movement surface condition report
AMU – air movements unit
AOE – airport of entry
APM – airport manager
APPR – approval, approve
APRT – airport
ARAF – air reserve air force
ARNG – arrangement, arrange
ARTCC – air route traffic control centre (US)
ASDE – airport surface detection equipment
ASPH – asphalt
ASR – airport surveillance radar
ASSN – association
ATB – airport terminal building
ATC – air traffic control
ATF – aerodrome traffic frequency
ATTN – attention
AU – approach Unicom
AUW – all up weight
AVN – aviation
BC – back course
BDRY – boundary
BIL – bilingual
BLKD – blocked
BM – back marker
BPOC – before proceeding on course
BRG – bearing
BTWN – between
CAE – control area extension
CAR(S) – Canadian Aviation Regulations publication
CARS – community aerodrome radio station
CCTV – closed circuit television
CCW – counter clockwise
CDA – Canadian domestic airspace
CDF – central de-icing facility
CDN – Canadian
CEIL – ceiling
CERT – certificate/certified
CF – Canadian forces
CFA – common frequency area
CFB – Canadian forces base
CFS – Canadian forces station
CH or CHAN – channel
CHG – charge
CIV – civilian
CK – checked, check
CLNC – clearance
CLSD – closed
CMNPS – Canadian minimum navigation performance specifications
COM/COMM – communication
COMSN – commission
CON – contract fuel
CONC – concrete
CONT – continuous
CONVL – conventional
CORP – corporation
CRS – course
CSN – Canadian switched network
CTN – caution
CTR – centre
CVFR – controlled VFR flight
CW – clockwise
CWO – contract weather observer
CZ – control zone
DEL – delivery
DEPT – department
DEP CON – departure control
DF – direction finding
DIA – diameter
DIREC – directional
DISPL – displaced
DND – department of national defense
DSN – defense switched network
DUAT – direct user access terminal
DUR – during, duration
DVFR – defense visual flight rules
DWAN – defense wide area network
EAT – expected approach time
EC – Environment Canada
EET – estimated elapsed time
EFC – expected further clearance time
EFF – effective
ELECT – electrical starting units
ELEV – elevation
ELT – emergency locator transmitter
ERS – emergency response services
ESA – emergency safe altitude
ETE – estimated time en route
EV – every
EXTV – extensive
FAA – federal aviation administration
FACF – final approach course fix
FATO – final approach and takeoff area
FBO – fixed base operator
FLD – field
FLIP – flight information publication
FLT PLN – flight plan
FM – frequency modulation
FOD – foreign object damage/debris
FR – from
FSII – fuel system icing inhibitor
G – grid
GAL – gallon
GCA – ground controlled approach
GCL – ground control intercept
GEN – general
GND – ground
GND CON – ground control
GOVT – government
GPI – ground point of interception
GR WT – gross weight
GS – glide slope
GTOW – gross takeoff weight
GV – grivation
H – hour
HAA – height above aerodrome
HDLG – handling
HAT – height above TDZE
HF – high frequency
HG – hanger
HG – inches of mercury
HI – high
HIAL – high intensity approach lighting
HIRL – high intensity runway lights
HLA – high level airspace
HOSP – hospital
HQ – headquarters
HR – high level air route
HWY – highway
IAIP – integrated aeronautical information package
ICAO – international civil aviation organization
ID – Idaho
IFF – identification friend or foe
IFSS – international flight service station
INBD – inbound
INC – incorporated
INF – inland navigational fix
INFO – information
INOP – inoperative
INS – inertial navigation system
INTSV – intensive
INTXN – intersection
IRU – inertial reference unit
ISA – international standard atmosphere
J – high level airway
JASU – jet aircraft starting unit
JB – jet barrier
JMC – joint meteorological centre
KHZ – kilohertz
KPH – kilometers per hour
KW – kilowatt
LAT – latitude
LCTD – located
LCZR – localizer
LF – low frequency
LOC – located/location
LONG – longitude
LVOP – low visibility operations plan
M – metres
M – magnetic
MAG VAR – magnetic variation
MANOT – missing aircraft notice
MB – millibar
MDT/HVY – moderate/heavy
ME – Maine
MEDEVAC – medical evacuation flight
MEHT – minimum eye height over threshold
MEM – memorial
METOC – meteorological and oceanographic
MFA – military flying area
MFAU – military flight advisory unit
MGR – manager
MHZ – megahertz
MI – Michigan
MIC – microphone
MISD – missed
MN – Minnesota
MNR – ministry of natural resources
MOA – military operations area
MTNS – mountains
MUNI – municipal/municipality
MVA – minimum vectoring altitude
N/A – not applicable
NATO – North Atlantic Treaty Organization
NCA – northern control area
ND – North Dakota
NDA – northern domestic airspace
NGT – night
NO – number
NORDO – no radio
NT – Northwest Territories
NTAS – NORAD tactical autovon system
NTC – notice
NU – not usable
NU – Nunavut
NVG – night vision goggles
NWS – north warning system
OBD – outbound
OBSN(S) – observation(s)
OC – obstacle chart
OCC – obstacle clearance circle
OCL – obstacle clearance limit
OCSL – occasional
ODALS – omni-directional approach lighting system
OPRG – operating
O/S – out of service
O/T – other times
PAX – passenger
PCN – pavement classification number
PE – Prince Edward Island
PERM(S) – permission(s)
P-LINE(S) – power line(s)
PLR – pavement load rating (TC)
PMSV – pilot to metro service
POSN – position
PRO – procedure
PROH – prohibited
PSI – pounds per square inch
PSP – pierce steel planking
PT – point
PTN – pattern
PUB – public
PVT – private
RAAS – remote aerodrome advisory service
RAD – radial
RATCON – radar terminal control
RCMP – Royal Canadian Mounted Police
RCR – runway condition report
RCV – receive
RCVR – receiver
RESA – runway end safety area
REG – registered
REQ – request
RGT – right
RIL – runway identification lights
RLCD – relocated
RNG – range
RNPC – required navigation performance capability (airspace)
RON – remain overnight
RONLY – receiver only
RPT – report
RQRD – required
RR – retro reflective markers
RSC – runway surface condition
RSTD – restricted
RUF – rough
RVOP – reduced visibility operations plan
RVSM – reduced vertical separation minimum
SATCOM – satellite communications
SCA – southern control area
SCON – contract servicing
SDA – southern domestic airspace
SEAPL – seaplane
SEC – seconds of time
SELCAL – selective calling system
SFL – sequence flashing lights
SIF – selective identification feature
SIGMET – significant meteorological report
SIMUL – simultaneously
SM – statute miles
SOAP – spectrometric oil analysis program
SPECI – aerodrome special meteorological report
SQN – squadron
SSFO – simultaneous single frequency outlets
STAR – standard terminal arrival route
STD – standard
STN – station
STOR – storage
STU – student
SUM – summer
SUR – surround
SVCG – servicing
SWY – stopway
T – transmits only
T – True (after a bearing)
TA (3000) – transition altitude
TAS – true air speed
TC – Transport Canada
TCA – terminal control area
TCAS – traffic alert and collision avoidance system
TCU – terminal control unit
TDZE – touchdown zone elevation
TDZL – touchdown zone lighting
THLD – threshold
TNG – training
TRAN – transient
UHF – ultra high frequency
UNAVBL – unavailable
UNKN – unknown
UNLGTD – unlighted
UNLTD – unlimited
UNSKED – unscheduled
USA – United States of America
USAF – United States air force
USB – upper side band
USN – United States navy
UTC – coordinated universal time
VCS – vehicle control service
VGM – voice generator module
VGSI – visual glide slope indicator
VHF – very high frequency
VIC – vicinity
VNC – VFR navigation chart
VOLMET – meteorological information for aircraft in flight
VTPC – VFR terminal procedures chart
WA – Washington
WG – wing
WI – wind direction indicator
WIN – winter
WK(S) – week(s)
WKD – weekday
WKLY – weekly
WKNDS – weekends
WNG – warning
WP – way point
WT – weight
XMSN – transmission
YT – Yukon


Abbreviations & Acronyms Used in Canadian NOTAM’s

ABN – aerodrome beacon
ABV – above
ACC – area control centre
ACFT – aircraft
ACT – active/activated/activity
AD – aerodrome
ADIZ – air defense identification zone
ADJ – adjacent
ADS-B – automatic dependent surveillance broadcast
ADZ – advise
AFT – after (time or place)
AGL – above ground level
AIC – aeronautical information circular
AIP – aeronautical information publication
ALS – approach lighting system
ALT – altitude
AMDT – AIP amendment
AP – airport
APAPI – abbreviated PAPI
APCH – approach
APN – apron
APRX – approximately
ARCAL – aircraft radio control of aerodrome lighting
ARFF – aircraft rescue and fire-fighting
ARR – arrive/arrival
ASDA – accelerate stop distance available
ASL – above sea level
ATC – air traffic control
ATFM – air traffic flow management
ATIS – automatic terminal information service
ATS – air traffic services
AUTH – authorized/authorization
AVASIS – abbreviated visual approach slope indicator system
AVBL – available/availability
AVGAS – aviation gasoline
AWOS – automatic weather observation system
AWY – airway
AZM – azimuth
BCN – beacon
BCST – broadcast
BFR – before
BLDG – building
BLW – below
BRKG – braking
C – centre
C – degrees Celsius
CAP – Canada Air Pilot publication
CAT – category
CFS – Canada Flight Supplement publication
CHEM – chemical
CL – centerline
CLR – clear, cleared to, clearance
CLRD – cleared runway
CLSD – close/closed/closing
COMSND – commissioned
COND – condition
CONST – construction/constructed
COOR – coordinate/coordination
COORD – coordinates
CPDLC – controller pilot data link communications
CRFI – Canadian runway friction index
CTA – control area
CTC – contact
CTL – control
CUST – customs
CWAS – Canada Water Aerodrome Supplement publication
CYA – class F advisory area
CYD – class F danger area
CYR – class F restricted area
DA – decision altitude
DAH – Designated Airspace Handbook publication
DECOMSND – decommissioned
DEG – degrees
DEP – depart/departure
DEST – destination
DH – decision height
DIST – distance
DLA – delay/delayed
DLY – daily
DME – distance measuring equipment
DOM – domestic
DP – dew point temperature
DPT – depth
DRCO – dialup remote communication outlet
DRG – during
DT – daylight savings time
DTHR – displaced runway threshold
EATPL – emergency air traffic priority list
EM – emission
EMERG – emergency
ENR – en route
EQPT – equipment
ESCAT – emergency security control of air traffic
ETA – estimated time of arrival
ETD – estimated time of departure
EXC – except
EXER – exercises/exercising/exercise
EXP – expect/expected/expecting
FAC – facilities
FAF – final approach fix
FATO – final approach and takeoff area
FAX – facsimile transmission
FCST – forecast
FIC – flight information centre
FIR – flight information region
FISE – flight information service enroute
FL – flight level
FLR – flares
FLT – flight
FLW – follows/following
FM – from
FMS – flight management system
FPM – feet per minute
FREQ – frequency
FSS – flight service station
FT – foot/feet
GLD – glider
GNSS – global navigation satellite system
GP – glide path
GPS – global positioning system
GRVL – gravel
H24 – continuous day/night service
HAPI – helicopter approach path indicator
HBN – hazard beacon
HDG – heading
HEL – helicopter
HELI – heliport
HGT – height or height above
HOL – holiday
HR – hours
HYDRO – water aerodrome
IAF – initial approach fix
ID – identify/identifier
IDENT – identification
IFR – instrument flight rules
ILS – instrument landing system
IMC – instrument meteorological conditions
INFO – information
INS – inch/inches
INSTR – instrument
INT – intersection
INTL – international
INTST – intensity
IR – ice on runway
KG – kilograms
KT – knots
L – left
LB – pounds
LDA – landing distance available
LDG – landing
LEN – length
LGT – lights/lighting
LGTD – lighted
LIH – light intensity high
LIL – light intensity low
LIM – light intensity medium
LNAV – lateral navigation
LOC – localizer
LP – localizer performance without vertical guidance
LPV – localizer performance with vertical guidance
LTD – limited
LVL – level
LWIS – limited weather information system
MAG – magnetic
MAINT – maintenance
MAX – maximum
MDA – minimum descent altitude
MEA – minimum enroute altitude
MET – meteorological/meteorology
METAR – aerodrome routine meteorological report
MF – medium frequency
MIL – military
MIN – minutes
MNPS – minimum navigation performance specifications
MOC – minimum obstacle clearance
MOCA – minimum obstacle clearance altitude
MSA – minimum sector altitude
MSG – message
MSL – mean sea level
MTCA – military terminal control area
NAT – north Atlantic
NAV – navigation
NAVAID – navigation aid
NDB – non directional radio beacon
NE – northeast
NGT – night
NM – nautical miles
NPA – non precision approach
OBS – observe/observed/observation
OBST – obstacle/obstruction
OCA – oceanic control area
OPN – open/opening/opened
OPR – operator/operate/operative/operating/operational
OPS – operations
O/R – on request
OTS – organized track system
PAL – peripheral station
PAPI – precision approach path indicator
PAR – precision approach radar
PCT – percent
PERM – permanent
PIREP – pilot weather report
PNR – prior notice required
PPR – prior permission required
PRKG – parking
PROC – procedure
PSR – primary surveillance radar
PUB – published/publications
PWR – power
QUAD – quadrant
R – right
RAC – règlement de l’aviation Canadian (CAR)
RAG – runway arresting gear
RAIM – receiver autonomous integrity monitoring
RCAP – restricted Canada air pilot
RCC – rescue coordination centre
RCL – runway centre line
RCLL – runway centre line lights
RCO – remote communications outlet
RDL – radial
RDO – radio
REC – receive/receiver
REDL – runway edge light(s)
REF – reference
RENL – runway end lights
RMK – remark
RNAV – area navigation
RNP – required navigation performance
RSC – runway surface condition
RSR – enroute surveillance radar
RTE – route
RTHL – runway threshold light(s)
RTZL – runway touchdown zone light(s)
RVR – runway visual range
RWY – runway
SAR – search and rescue
SDBY – standby
SFC – surface
SID – standard instrument departure
SKED – schedule/scheduled
SN – snow
SR – sunrise
SS – sunset
SSB – single sideband
SSR – secondary surveillance radar
STAR – standard instrument arrival
SVC – service, service message
SVCBL – serviceable
TACAN – ultra high frequency tactical air navigation aid
TAF – aerodrome terminal area forecast
TAR – terminal area surveillance radar
TCH – threshold crossing height
TDZ – touchdown zone
TEL – telephone
TEMPO – temporary/temporarily
TFC – traffic
THR – threshold
THRU – through
TIL – until
TKOF – takeoff
TLOF – touchdown and lift-off area
TML – terminal
TODA – takeoff distance available
TORA – takeoff run available
TRANS – transmits/transmitter
TWR – aerodrome control tower or aerodrome control
TWY – taxiway
UDF – ultra high frequency direction-finding station
UNICOM – private advisory station located at uncontrolled aerodrome
UNL – unlimited
UNREL – unreliable
U/S – unserviceable
VAGS – visual alignment guidance system
VAR – magnetic variation
VASIS – visual approach slope indicator system
VCY – vicinity
VDF – very high frequency direction finding station
VFR – visual flight rules
VIS – visibility
VMC – visual meteorological conditions
VNAV – vertical navigation
VNC – VFR navigation chart
VOR – VHF omnidirectional radio range
VORTAC – VOR and TACAN combination
VTA – VFR terminal chart area
WAAS – wide area augmentation system
WATER – water aerodrome
WDI – wind direction indicator
WEF – with effect from, effective from
WID – width/wide
WIP – work in progress
WX – weather
Z – zulu, coordinated universal time


Abbreviations & Acronyms Used in Aviation Forecasts

ABV – above
ACC - altocumulus castellanus
ACRS – across
ACSL – standing lenticular altocumulus
AFL – above freezing layer
AHD – ahead
ALG – along
APCH – approach
ASL – above sea level
BECMG – becoming
BGNG – beginning
BKN – broken
BL – blowing
BLO – below
BR – mist
BRF – brief
BRFLY – briefly
BRKS – breaks
BTN – between
CAT – clear air turbulence
CAVOK – ceiling and visibility OK
CB – cumulonimbus
CIG – ceiling
CLD – cloud
CLR – clear
CNTR – centre
CST – coast
CU – cumulus
DCRG – decreasing
DEG – degree
DNSLP – downslope
DP – deep
DPNG – deepening
DRFT – drifting
DURG – during
DVLPG – developing
DZ – drizzle
ELSW – elsewhere
EMBD – embedded
ENDG – ending
ERLY – easterly
EXC – except
FCST – forecast
FEW – few clouds
FG – fog
FM – from
FNT – front
FRQ – frequent
FT – foot
FU – smoke
FZ – freezing
FZLVL – freezing level
HGT – height
HI – high
HVY – heavy
ICG – icing
ICGIC – icing in cloud
ICGIP – icing in precipitation
INSTBY – instability
INTMT – intermittent
INTS – intense
INTSFY – intensify
ISOL – isolate
ISOLD – isolated
KT – knot
LCL – local
LFTG – lifting
LGT – light
LK – lake
LLJ – low level jet stream
LLWS – low level wind shear
LN – line
LO – low
LTL – little
LTNG – lightning
LVL - level
LWR - lower
LWRG – lowering
LYR – layer
MDT – moderate
MOVG – moving
MTS – mountains
MXD – mixed
NELY – northeasterly
NGT – night
NLY – northerly
NM – nautical mile
NMRS – numerous
NR – near
NRLY – nearly
NSW – no significant weather
NWLY – northwesterly
OBSC – obscure
OBSCD – obscured
OCNL – occasional
OCNLY – occasionally
OFSHR – offshore
ONSHR – onshore
OTLK – outlook
OTWZ – otherwise
OVC – overcast
OVR – over
PCPN – precipitation
PD – period
PL – ice pellets
PROB – probability
PROG - prognostic, prognosis
PRSTG – persisting
PTCHY – patchy
PTLY – partly
QS – quasi-stationary
RA – rain
RDG – ridge
REP – report
REPS – reports
RGN – region
RPDLY – rapidly
SCT – scattered
SELY – southeasterly
SEV – severe
SFC – surface
SH – shower
SHLW – shallow
SIGWX – significant weather
SKC - sky clear
SLY – southerly
SM – statute mile
SN – snow
SPECI – special meteorological report
SQ – squall
STG – strong
SVRL – several
SWLY – southwesterly
TCU – towering cumulus
TROF – trough
TROWAL – trough of warm air aloft
TRRN – terrain
TS – thunderstorm
TURB – turbulence
UPR – upper
UPSLP – upslope
UTC – coordinated universal time
VC – vicinity
VIS – visibility
VLY – valley
VRB – variable
VV – vertical visibility
WDLY – widely
WK – weak
WLY – westerly
WND – wind
WRM – warm
WS – wind shear
WV – wave
XTNSV – extensive
XTRM – extreme


Conclusion

The lists of abbreviations & acronyms for aviation are far more exhaustive than what I’ve listed here.  In addition, you should be aware that certain words can have more than one acronym or abbreviation, depending on which source that you consult.  It would also be wise to spend quite a bit of time studying the various resources that I’ve linked to on this page:  http://www.djbolivia.ca/aviation.html

Thanks for reading, I hope this was helpful to pilots in training.  If you find any errors in the above information, feel free to contact me at jonathan.scooter.clark@gmail.com

-          Jonathan Clark









Follow Jonathan Clark on other sites:
        Twitter:  twitter.com/djbolivia
        SoundCloud:  soundcloud.com/djbolivia
        YouTube:  youtube.com/djbolivia
        Facebook:  facebook.com/djbolivia
        Main Site:  www.djbolivia.ca
        About.Me:  about.me/djbolivia
        Music Blog:  djbolivia.blogspot.ca
        MixCloud:  mixcloud.com/djbolivia
        DropBox:  djbolivia.ca/dropbox




Tuesday, November 22, 2016

SHG Radio Show, Episode 332

Welcome to this week's edition of Subterranean Homesick Grooves™, a weekly electronica-based radio show presented originally on CHMA FM 106.9 at Mount Allison University in Atlantic Canada (but expanded to distribution on other terrestrial and internet-based radio stations), and also distributed as a global podcast through iTunes. The show is normally programmed and mixed by Jonathan Clark (as DJ Bolivia), although some weeks very occasionally feature guest mixes by other Canadian DJ's. The show encompasses many sub-genres within the realm of electronic dance music, but the main focus is definitely on tech-house and techno, and a small amount of progressive, trance, & minimal. Due to the mix of styles, you may hear combinations of tracks that wouldn't normally be featured together in a DJ's live set, but this show is intended to feature various styles of electronic/dance music. Liner notes for this episode (SHG 332) can be seen below.

Para la información en español, vaya aquí.

I should point out that when I make these shows, I mean for them to be a journey. I pay a lot of attention to the programming, and to the development of energy levels. If you're a first-time listener, you might think that the start of the show is quite tame, on the slower and "deeper" side of house or techno. However, give it time. Pay attention to how the styles change throughout the mix, and how the energy builds. Sometimes, I'll be very erratic and jump around between several genres, just for fun. Sometimes, I'll do a particularly dark show, with a heavy emphasis on techno. Most of the time however, you'll find a mix of mostly deep house or minimal or deep techno for the first third of the mix, building into a more upbeat section of tech-house through the middle, perhaps building up to some energetic tracks at the end, which often trespass into the realm of more contemporary house. Don't treat the show as a collection of individual tracks ... think of it as a cohesive experience; an hour-long aural journey of reflection and beats.

By the way, if you're looking for DJ mixes in styles other than progressive/tech-house, check out www.djbolivia.ca/mixes.html. That page has a number of mainstream/top40 dance mixes (the "Workout Mix" series), as well as some deep house, drum and bass, and other styles.




Here's our Podcast Feed to paste into iTunes or any other podcatcher:
http://feeds.feedburner.com/shg

Older episodes of the show are not directly available from our main servers anymore, to conserve space for more recent episodes. However, all older episodes have been posted individually on SoundCloud, and also in archives of 25 episodes apiece (convenient for bulk downloading) from DJ Bolivia's Public Dropbox folder. That Dropbox link also has folders for individual tracks and remixes, project files and stem collections for producers who want to make their own remixes, videos, and other material. You don't even need to have a Dropbox account to download files from it.


Here’s a link so you can listen to the show or download it from SoundCloud:



Here are Track Listings for episode 332:

01. Thomas Gandey & Deneha - Your Poison (2016 Edit).
02. Di Santo - Party Time (Renso Salvatore Remix).
03. Adrian Braga - In10sity (Original Mix).
04. Sam & Billy Roger - El Pescador (Greck B Remix).
05. Juan Chousa - El Afrocubano (Dany Cohiba Remix).
06. Ron Carroll - The Sermon (Tobi Kramer Remix).
07. Wehbba, Joyce Muniz, & Angelique Bianca - Sleepless (Original Mix).
08. Tom Wax - Genuss (Original Mix).
09. G Mode - Message (Original Mix).
10. Raul Martin - Night Talks (Original Mix).
11. Klum Baumgartner & The Minimal Puppets - Explorers (Jason Rivas Edit).
12. Jhony Rivers - Zerotonina (German Agger Remix).





Here are links to either personal websites, Facebook pages, or [usually] the SoundCloud pages for a few of the original artists and remixers/producers listed above.



Thomas Gandey (France)
Di Santo (Italy)
Adrian Braga (Mexico)
Juan Chousa (Spain)
Ron Carroll (United States)
Wehbba (Brazil)
Tom Wax (Germany)
Raul Martin (Spain)
Jhony Rivers (Argentina)
Renso Salvatore (Argentina)
Greck B (Spain)
Dany Cohiba (Spain)
Tobi Kramer (Germany)
Jason Rivas (Spain)
German Agger (Argentina)



Subterranean Homesick Grooves is a weekly specialty EDM music show with a basic weekly audience base of about 1500 listeners per week through podcasting, direct downloads, and distribution on a small number of internet-based radio networks, plus another hundred or so listeners through SoundCloud, and an unknown number of listeners through terrestrial FM broadcast. If you're a radio station programming director, and would like to add Subterranean Homesick Grooves to your regular programming lineup, contact djbolivia@gmail.com for details. We currently release SHG as an advance download to a number of stations globally on a weekly basis (at no charge), and we welcome inquiries from additional outlets.

Go to the Mix Downloads page on the main DJ Bolivia website if you'd like to check out a number of our older shows, or visit our SoundCloud page for individual tracks and remixes. And if you're interested in learning more about DJ'ing or music production, check out Jonathan Clark's extensive and very popular series of YouTube tutorials. There's a full & organized index of all the videos at:
djbolivia.ca/videos.html

We also have a file containing complete track listings from all of DJ Bolivia's radio shows, studio mixes, and live sets. The PDF version can be viewed from within your browser by clicking directly. Both the PDF and the Excel versions can be downloaded by right-clicking and choosing the "save link as" option:

View as PDF file: http://www.djbolivia.ca/complete_track_history_djbolivia.pdf
Download Excel file: http://www.djbolivia.ca/complete_track_history_djbolivia.xlsx









Follow Jonathan Clark on other sites:
        Twitter: twitter.com/djbolivia
        SoundCloud: soundcloud.com/djbolivia
        YouTube: youtube.com/djbolivia
        Facebook: facebook.com/djbolivia
        Main Site: www.djbolivia.ca
        About.Me: about.me/djbolivia
        Music Blog: djbolivia.blogspot.ca
        MixCloud: mixcloud.com/djbolivia
        DropBox: djbolivia.ca/dropbox




Saturday, November 12, 2016

SHG Radio Show, Episode 331

Welcome to this week's edition of Subterranean Homesick Grooves™, a weekly electronica-based radio show presented originally on CHMA FM 106.9 at Mount Allison University in Atlantic Canada (but expanded to distribution on other terrestrial and internet-based radio stations), and also distributed as a global podcast through iTunes. The show is normally programmed and mixed by Jonathan Clark (as DJ Bolivia), although some weeks very occasionally feature guest mixes by other Canadian DJ's. The show encompasses many sub-genres within the realm of electronic dance music, but the main focus is definitely on tech-house and techno, and a small amount of progressive, trance, & minimal. Due to the mix of styles, you may hear combinations of tracks that wouldn't normally be featured together in a DJ's live set, but this show is intended to feature various styles of electronic/dance music. Liner notes for this episode (SHG 331) can be seen below.

Para la información en español, vaya aquí.

I should point out that when I make these shows, I mean for them to be a journey. I pay a lot of attention to the programming, and to the development of energy levels. If you're a first-time listener, you might think that the start of the show is quite tame, on the slower and "deeper" side of house or techno. However, give it time. Pay attention to how the styles change throughout the mix, and how the energy builds. Sometimes, I'll be very erratic and jump around between several genres, just for fun. Sometimes, I'll do a particularly dark show, with a heavy emphasis on techno. Most of the time however, you'll find a mix of mostly deep house or minimal or deep techno for the first third of the mix, building into a more upbeat section of tech-house through the middle, perhaps building up to some energetic tracks at the end, which often trespass into the realm of more contemporary house. Don't treat the show as a collection of individual tracks ... think of it as a cohesive experience; an hour-long aural journey of reflection and beats.

By the way, if you're looking for DJ mixes in styles other than progressive/tech-house, check out www.djbolivia.ca/mixes.html. That page has a number of mainstream/top40 dance mixes (the "Workout Mix" series), as well as some deep house, drum and bass, and other styles.




Here's our Podcast Feed to paste into iTunes or any other podcatcher:
http://feeds.feedburner.com/shg

Older episodes of the show are not directly available from our main servers anymore, to conserve space for more recent episodes. However, all older episodes have been posted individually on SoundCloud, and also in archives of 25 episodes apiece (convenient for bulk downloading) from DJ Bolivia's Public Dropbox folder. That Dropbox link also has folders for individual tracks and remixes, project files and stem collections for producers who want to make their own remixes, videos, and other material. You don't even need to have a Dropbox account to download files from it.


Here’s a link so you can listen to the show or download it from SoundCloud:



Here are Track Listings for episode 331:

01. Ivan Serra, Mr J, & Glock - Supergloop (Original Mix).
02. Lunar Plane & Ubbah - Apogee (Original Mix).
03. Teo Brothers - We Are The Future (Original Mix)
04. D Formation & Made In Riot - Walking On The Sky (Dani Sbert Remix).
05. DJ PP - Has To Be Done (Handzoff Remix).
06. Aldo Cadiz - Bien Nitido (Anek Remix).
07. Ralph Sliwinski & Syntec - Poacher (Original Mix).
08. Jeremy Olander - Taiga (Jamie Stevens Remix).
09. Lanfree - Luscious (Original Mix).
10. Christian Bonori - Berlin Petit Chat (Alberto Ruiz Remix).
11. JJ Mullor & Dani Sbert - So Get Up (Original Mix).
12. Rydel - Beat The Men (Original Mix).





Here are links to either personal websites, Facebook pages, or [usually] the SoundCloud pages for a few of the original artists and remixers/producers listed above.



Ivan Serra (Spain)
Lunar Plane (Turkey)
Ubbah (Argentina)
Teo Brothers (Netherlands)
D Formation (Spain)
Made In Riot (Spain)
DJ PP (Uruguay)
Dani Sbert (Spain)
Anek (Denmark)
Jamie Stevens (Australian)
Alberto Ruiz (Spain)
Aldo Cadiz (Chile)
Ralph Sliwinski (Germany)
Jeremy Olander (Sweden)
Lanfree (Italy)
Christian Bonori (Italy)
JJ Mullor (Spain)
Dani Sbert (Spain)
Rydel (Solvenia)



Subterranean Homesick Grooves is a weekly specialty EDM music show with a basic weekly audience base of about 1500 listeners per week through podcasting, direct downloads, and distribution on a small number of internet-based radio networks, plus another hundred or so listeners through SoundCloud, and an unknown number of listeners through terrestrial FM broadcast. If you're a radio station programming director, and would like to add Subterranean Homesick Grooves to your regular programming lineup, contact djbolivia@gmail.com for details. We currently release SHG as an advance download to a number of stations globally on a weekly basis (at no charge), and we welcome inquiries from additional outlets.

Go to the Mix Downloads page on the main DJ Bolivia website if you'd like to check out a number of our older shows, or visit our SoundCloud page for individual tracks and remixes. And if you're interested in learning more about DJ'ing or music production, check out Jonathan Clark's extensive and very popular series of YouTube tutorials. There's a full & organized index of all the videos at:
djbolivia.ca/videos.html

We also have a file containing complete track listings from all of DJ Bolivia's radio shows, studio mixes, and live sets. The PDF version can be viewed from within your browser by clicking directly. Both the PDF and the Excel versions can be downloaded by right-clicking and choosing the "save link as" option:

View as PDF file: http://www.djbolivia.ca/complete_track_history_djbolivia.pdf
Download Excel file: http://www.djbolivia.ca/complete_track_history_djbolivia.xlsx









Follow Jonathan Clark on other sites:
        Twitter: twitter.com/djbolivia
        SoundCloud: soundcloud.com/djbolivia
        YouTube: youtube.com/djbolivia
        Facebook: facebook.com/djbolivia
        Main Site: www.djbolivia.ca
        About.Me: about.me/djbolivia
        Music Blog: djbolivia.blogspot.ca
        MixCloud: mixcloud.com/djbolivia
        DropBox: djbolivia.ca/dropbox




Tuesday, November 8, 2016

Pre-Solo Flight Basics Study Notes (Canadian PPL)

This version of my “Pre Solo Flight Basics” study notes is from November 14th, 2016.  I’ll update this document any time I find the need to make any changes, and as I continue to progress through additional training.

I am sharing these study notes for anyone else who is taking their PPL in Canada.  These aren’t intended as a replacement for proper training.  I’m only sharing these notes as a supplement covering many of the key points that I decided that I really needed to memorize while going through my own PPL studies.  The info in these notes comes from a large number of different sources:  The Transport Canada Flight Training Manual, Transport Canada’s Aeronautical Information Manual (AIM), various flight schools and instructors (in multiple provinces), and numerous other books and online sources.  These notes are not always in any particular order, although I tried to keep similar topics together in many cases.

Please note that while I have made every effort to ensure that all of the information in these notes is accurate, based on the sources from which I learned, you should verify everything here against what you’ve learned in your own study programs.  I (Jonathan Clark) shall not assume any liability for errors or omissions in these notes, and your official pilot training should always supersede any information presented herein.  As the Canadian PPL curriculum is updated occasionally, I recommend that if you want to be 100% certain that everything in this set of study notes is correct, you should print a copy and ask your instructor to review these notes with you.

If the aircraft type is not specified in the notes below, you should always assume that they refer specifically to characteristics of a Cessna 172M, which is a common training aircraft, and the type that I have used most frequently.  Know the characteristics of your own specific training/examination aircraft by memory!


To download PDF or audio MP3 versions of these notes, visit:  http://djbolivia.ca/aviation.html




Let’s Get Started – Pre Solo Flight Basics

Aircraft Familiarization

If you’re flying VFR, your attention should be outside the plane at least 70-80% of the time.

Airspeed Indicator – Displays the speed going through the air, taking wind into account.  Does not correlate to ground speed unless you’re flying straight and level and there’s no wind.

Attitude Indicator – Tells the pilot if the aircraft is nose-high or nose-low, and the amount of bank.  This is the most important instrument for flight in clouds.

Altimeter – Height above sea level, not above the ground.

Vertical Speed Indicator – Shows the rate at which the aircraft is climbing or descending, in feet per minute.

Heading Indicator – Like a compass, but more stable during manoeuvres.  Also known as directional gyro.

Turn Coordinator – Shows the rate of turn, and can indicate how long it takes to turn 180 degrees.  The inclinometer (ball) helps make sure you’re not slipping or skidding when you’re turning.

Tachometer – Measures RPM’s.

Other engine gauges:
-          Fuel
-          Oil temperature
-          Oil pressure
-          Fuel flow
-          Exhaust gas temperature
-          Vacuum
-          Ammeter

VOR – Radio navigation instrument.  This is the primary instrument used to define airways.

ILS – Very sensitive VOR, not in many small aircraft.

ADF – Another radio navigation instrument which is disappearing from common use.  Also known as the Radio Compass.

COMM – Radio transceiver used for voice communications.

NAV – Radio used for navigation.

Transponder – Sends out a signal to ATC’s secondary radar, to show where the aircraft is.  If set to ALT, it gives them your altitude (known as a Mode C transponder).

Other important stuff:
-          Mixture
-          Throttle
-          Trim
-          Flaps
-          Fuel selector
-          Mags (magnetos)
-          Primer


Documents

Remember this acronym:  AROWJIL

  A – Airworthiness
  R – Registration
  O – Operator’s Handbook (POH)
  W – Weight & Balance
  J – Journey Log
  I – Insurance
  L – Licenses (personal, ie. PPL & medical)

Registration of the aircraft doesn’t expire as long as there is no change in owner, address, or purpose.

Types of insurance:
1.       Public or Third Party Liability – Mandatory, valid for damage done by the aircraft.
2.       Passenger Liability – Optional for private, mandatory for commercial.
3.       Hull Insurance – Optional.  For damage to the aircraft itself.

Your license is only valid when accompanied by a current medical.

Radio License is valid for life, as long as you can talk.  Issued by Industry Canada, not by Transport Canada.


Weights & Balances

See also my ground school study notes.

Every plane has a maximum weight for which it is certified to take off at.  Performance will also change based on weight distribution.

Standard Empty Weight – Includes aircraft with standard equipment, oil, and unusable fuel.

Basic Empty Weight – Includes all optional equipment installed.  Check POH/W&B/exam to double check whether oil is included, as this can vary from manufacturer to manufacturer.

Useful Load – Gross takeoff weight less basic empty.  Includes usable fuel, pilot, crew, passengers, baggage, and freight.

Maximum Weight – Weight allowed for takeoff.

Maximum Ramp Weight – Slightly high than Maximum Takeoff Weight.  Allows for a few extra pounds for ground Manoeuvring, ie. fuel burned during taxi and run-up.

Fuel & Oil Weights:
  AVGAS – 6 pounds per gallon.
  Oil – 7.5 pounds per gallon.

Zero Fuel Weight – Useful load weight but with no usable fuel.

Maximum Zero Fuel Weight – Maximum weight to which aircraft can be loaded with passengers, baggage, and crew, before the rest must be fuel.  This is because too much weight in the fuselage will put too much stress on the wings while in flight when loaded beyond this value.  Weight of fuel in the wings bends the wings down.

Moment – Weight multiplied by distance from a reference point or fulcrum.

The fulcrum of an aircraft is located at the Center Of Lift (Center Of Pressure, CP) on the wing.  This is different than the Center Of Gravity (CG), which varies depending on loading.

Balance Principle – If the CG or the CP changes, then the elevator force must also change.

Datum Line – An arbitrarily selected point on the airplane from which all horizontal distances are measured for weight and balance purposes.  Not the same as the fulcrum!  Firewall is one such potential point.

Make sure you know on a CG graph which direction is an “aft” CG and which is a “fore” CG.

An aircraft with a CG in front of the fulcrum (CP) will want to “nose down”.  This is good, it’s safer.  It also cruises more slowly and is less susceptible to gusts.

You should prepare two weight and balance reports for each flight!  One for takeoff and one for landing (fuel burned).

As a pilot, you should know whether the CG moves fore or aft as the fuel is burned.

Normal Category means non-aerobatic and non-training ops (ie. no spins/spirals), from +3.8 G’s to -1.5 G’s.

Utility Category is generally OK for training conditions.  Only do spins when in this category, and only under the supervision of an instructor.


Walkaround

Walkaround notes:
-          Will probably take up to fifteen minutes or more on a small plane like a Cessna.
-          Take your time, do it right.
-          Be systematic.  Have a routine.
-          You will check the entire exterior, some things in the interior, and the fluids.
-          Never rush this or skip things.


Ancillary Controls

Never taxi with carb heat on, because the air is then unfiltered going into the carb.

Carb Ice forms inside the carburetor, whereas Impact Ice forms on the outside of the airplane, on the air intake filter.

The engine burns more fuel with carb heat on.  You’ll have less power too.

There is a temperature drop in a carb venturi for two reasons:
-          Decrease in pressure (Bernoulli’s principle).
-          Fuel is vaporized, which takes heat from the surroundings.

MOGAS is much more susceptible to carb icing than AVGAS.

Know the difference between carb and throttle icing.  Throttle ice is the same concept as carb icing, but occurs on the throttle plate.  Usually occurs when the throttle is only partly open, hence the reason some manufacturers recommend carb heat to fix the problem, if operating below the green arc on the tach.

In a Cessna, always use carb heat when running at less than 2100 rpm.

Throttle adds air.  Mixture adds fuel.

A richer mix (more fuel) cools the engine.

As an aircraft climbs, the air density decreases and the fuel/air mix becomes more rich.

EGT Gauge – The proper fuel/air mix will produce a given exhaust gas temperature, therefore, the pilot can adjust the fuel/air mix fairly accurately by observing the EGT gauge.

Environmental Controls – Vents and heat for pilot comfort.


Taxiing

Goals:
-          Taxi centered on the yellow lines!
-          While taxiing, have controls in the proper position (ie. ailerons centered or set to account for winds).
-          Know the list of standards expected on a flight test.
-          Always do a brake test right away.
-          Hold back pressure, if needed, to keep the nose up.

Differential Braking – Braking only on one side to help a turn.

Learn your marshalling signals.  They won’t be on the flight test, but you need to learn them.

Control positions in Quartering Winds:
-          Elevator neutral if wind is from the front, elevator down if behind.
-          Ailerons into wind if the wind is from the front, or away from wind if from behind.


Attitudes & Movements

Attitude + Power = Performance

Attitude – Position of the airplane with reference to the horizon.

Movements – How controls are manipulated to achieve various attitudes.

Basic cruise in a Cessna 172 is 2200 rpm, around 105-110 knots.

Basic Attitudes:
-          Cruise (pitch)
-          Nose Up (pitch)
-          Nose Down (pitch)
-          Banked (roll)

Types of Adverse Yaw:
1.       Aileron Drag – Drag on the down aileron (raised wing) will attempt to pull or veer the airplane’s nose in the direction of the raised wing, which is the opposite direction of what is desired.  This is the only type of adverse yaw that is caused by the ailerons.
2.       Gyroscopic Precession – Created by the propeller, which usually rotates clockwise from the pilot’s perspective.  Nose down yaw left, nose up yaws right.
3.       Torque – Twisting of the fuselage caused by the propeller.  Makes the airplane want to roll to the left.
4.       Slipstream – Airflow corkscrews around the fuselage.  Tends to force the tail right (nose left).
5.       Asymmetric Thrust – Related to “bite” of propeller when not vertical.  Results in a tendency for the airplane to yaw around the vertical axis to the left.





Straight and Level Flight

Learn to use the trim wheel properly to control the plane’s attitude.  You should be able to let go of the control column and have the plane fly at the correct attitude if the trim is set correctly.

In a Cessna 172, a change in power of 100 rpm usually translates into a change in speed of about 5 knots.

To increase the airspeed, you need to push the nose down.  But if you want to presumably maintain straight and level flight, you should first add power then push the nose slightly down to compensate, so you don’t just start climbing.

There is a huge difference in fuel consumption between 2000 and 2400 rpm, with 2400 burning 50% more fuel.


Climbing

Climbing speeds for a Cessna 172:
  VY – Best rate, 88mph
  VX – Best Angle, 68mph (or 65mph at 10 degrees flaps)
  VS0 – Stall Speed, flaps extended, 40mph
  VS1 – Stall Speed, flaps retracted, 49mph
  VR – Rotation, varies from say 52 to 58mph approximately
  VA – Design Manoeuvring Speed, 112mph calibrated, 115mph indicated

Max Crosswind is 17mph.

For going into a climb AND coming out of a climb, remember APT.

                A - Attitude
                P - Power
                T - Trim

Remember to do a lookout first.

In a climb, torque and asymmetric thrust will combine to produce a moderate roll and yaw to the left.  You must counteract with some right rudder pressure.

Winds change the steepness of a climb, but not the rate.

Your engine can overheat if a steep climb is maintained.  Pay close attention to oil temperature and pressure.  Pause the climb if necessary.

Hotter temperature and higher altitude and higher humidity makes it harder to climb.


Descents

Always do your lookout first.

Reduce power first, then attitude, then trim.  This applies both at the start of the descent and also when coming out.  Remember PAT.

                P – Power
                A – Attitude
                T – Trim

Types of descents:
-          Power On, En Route – most speed across the ground, shallow
-          Power On, Approach – slower, still fairly shallow
-          Power Off, Best Glide – coming in at 80mph (Cessna 172)

En Route – This descent features the highest groundspeed.  Set power to 2200 rpm.  High air speed (X axis), low rate of descent (Y).  Attitude is slightly forward.

Approach – Power is 1500 rpm.  Speed is about 80 mph.  Standard for landings.

Best Glide – Engine has stopped.  To practice, move the throttle to full idle, pitch up, then trim about three times.  Set the attitude for 80 mph before trim.

Essentially, when descending, the power (throttle) affects your rate of descent, and pitch affects airspeed.  They are actually slightly interrelated, but you can use this basic assumption to get started.

Any time the power goes below the green arc on the tachometer, you must add carb heat.

With a lengthy power-off descent, clear the engine occasionally by giving it a few seconds of throttle.

The rate and angle of descent are primarily affected by power/throttle, but are also somewhat affected by attitude/pitch, wind direction and speed, flap settings, gear setting, and density altitude.

Flaps will change the steepness AND rate of descent.

Putting flaps down makes your nose pitch up, so you need to pitch forward to counteract this.  Flaps, if used properly, should not reduce your airspeed.


Turns

Classes of turns:
  Gentle are less than 15 degrees
  Medium are 15 to 30 degrees
  Steep are greater than 30 degrees

Posture in a turn – Do not lean with the turn, or tilt your head.  That makes you more likely to feel nauseated.

Always do a lookout before entering a turn.

Entry into a turn:
1.       Lookout.
2.       Roll into bank:  ailerons deflected, then neutral.
3.       Rudder to coordinate and control yaw.
4.       Back pressure as required.
5.       Lookout again.

Goals in a turn:
-          Nose moves steadily and stays level on the horizon.
-          Constant airspeed.
-          Turn coordinator shows constant rate of turn.
-          Ball is centered.
-          Altimeter is steady.
-          VSI remains steady.

Too much rudder in a turn (in the direction of the turn) produces a skid.  Too little is a slip.  Keep the ball in the middle.

Slips are safer than skids, but you should still avoid them unless you’re attempting an intentional slip.

For a skid, think of a loose article on the dash.  If it slides in a turn, away from the direction of the turn, you are skidding.  Also, think of the tail swinging to the outside of the turn.

Slips are sometimes done on purpose.  Skids can be unsafe and are never done.  A skid could sometimes lead to a spin, which is very dangerous.

Steep turns are normally practiced at 45 degrees.  Practical applications are almost always limited to emergency situations or canyon turns.

On a flight test, for your steep turn, you need to keep:
-          Attitude within 100’.
-          Speed within 10 knots.
-          Bank within 10 degrees.
-          Rollout to heading within 10 degrees.

CALL” Check:
-          Cabin – belts, gauges, cabin secure.
-          Altitude – recovery by 2000’ AGL.
-          Location – orientation, not over built up areas.
-          Lookout – look up, down, around.

HASEL” Check:
-          Height – recovery by 2000’ AGL.
-          Area – not over cloud, water, built up areas.
-          Security – belts, cabin secure.
-          Engine – oil temp and pressure green, carb heat on.
-          Lookout – one 180o turn or two 90o turns.

Entry into a steep turn:
1.       CALL check or HASEL check.
2.       Fix on a landmark.
3.       Roll into turn.
4.       Pitch up to maintain altitude at 30o of bank.
5.       Add a bit of power to maintain airspeed (maybe 50-100 rpm).

Key instruments to scan:
1.       Airspeed (stable).
2.       Altitude (stable).
3.       Attitude (45o).

Recovery:
1.       Begin rollout early (one half the number of the bank angle).
2.       Rudder as needed.
3.       Reduce back pressure on the control column as loading comes off.
4.       Reduce power to cruise.

Load Factor – Ratio of the load on the wings to the aircraft’s weight.

A higher load factor leads to a higher stall speed.  So avoid steep turns at low speeds when you’re close to the ground, ie. on approach for landing.

Common errors on Steep Turns:
-          Forgetting to look out.
-          Overbanking.
-          Pulling back in an overbank (reduce bank first).
-          Spiral dives.
-          Insufficient power.
-          Failing to roll out in anticipation of proper heading.
-          Ballooning (gaining altitude on roll out).
-          Lack of coordination.


Slow Flight

Slow flight is that airspeed range above the stall speed, but below the speed for maximum endurance (best glide, 80pmh in a Cessna 172).

Practicing slow flight helps you avoid stalls, and makes you better at handling and controlling the aircraft.  You go through slow flight whenever you take off or land.

Slow flight is an important flight test item.

Learning an overshoot, and recovery from slow flight, are both very important.

To enter slow flight:
-          CALL check or HASEL check.
-          Carb heat on.
-          Reduce power to say between 1500 and 1700 rpm.
-          Raise nose to maintain attitude.
-          Put power back in (to maintain altitude) once airspeed reaches desired speed.  Maybe 1900 to 2000 rpm.
-          Trim it out.
-          Lookout.

If you start to gain a bit of altitude in slow flight because you added back too much altitude, it’s far easier to shed power than it would have been to get that altitude back because you didn’t add enough power.

You might need some right rudder in slow flight.

If you’re in slow flight and an examiner asked you to slow down even more, you can put the flaps down.

During slow flight, as in descents, your pitch controls your airspeed.


Recovery from Slow Flight:
1.       Add full power.
2.       Watch out, as the nose will begin to pitch up.
3.       Watch out, as the plane will yaw to the left.
4.       Carb heat cold.
5.       Flaps up, but do it in stages if you start out with more than 20 degrees of flaps.
6.       After reaching cruise speed, reduce power to 2200.
7.       Trim.
8.       Look out.

Common Errors during Slow Flight:
1.       Forgetting your CALL or HASEL check.
2.       Not adding power quickly enough (loss of altitude).
3.       Right rudder is not correct.
4.       Lack of coordination during turns.
5.       Not putting flaps down during slower speeds.
6.       Having a harder time turning right versus left.

Common Errors during Recovery:
1.       Not pitching forward as power is applied.
2.       Not corrective for adverse yaw.
3.       Forgetting to raise flaps.
4.       Forgetting to remove carb heat.


Stalls

A stall is a loss of lift and increase in drag that occurs when an aircraft is flown at an angle of attack that is greater than the angle for maximum lift, ie. when you lose smooth airflow over the wing.

Angle of Attack is what determines the stall.

A stall can occur at any airspeed, in any attitude, and with any power setting.

Two main types of stalls are Power-On and Power-Off.  You will have to demonstrate both of these on a flight test.

When recovering from stalls, go carb heat cold and power full, then climb at VY.  Lift gear and flaps, if appropriate, then trim.

Entry into a Power-Off Stall:
1.       CALL check or HASEL check.
2.       Carb heat hot.
3.       Power off.
4.       Rudder as required to maintain directional control.
5.       Gradually increase elevator back pressure to full, while maintaining altitude.

Three signs of an approaching stall:
1.       Slow flight characteristics appear.
2.       Stall warning buzzer.
3.       Buffeting.

At any time during a stall, the airplane (if a Cessna) will recover instantly if you let go of the controls.  So don’t be too nervous when practicing stalls, as long as you have sufficient altitude.

Recovery:
1.       Reduce elevator back pressure.
2.       Allow the aircraft to dive and speed up.
3.       Add power as required.
4.       When the airplane is flying, pull out of the dive smoothly.
5.       When safe, pitch gently for a climbing attitude.

Power-On Stall:
1.       Follow steps for Power-Off Stall.
2.       Directional control may be more difficult.
3.       Nose will have to be raised higher to initiate stall.
4.       At the stall, a pitch forward is more pronounced.
5.       Wing drop is much more likely.  If it happens, use abrupt opposite rudder and NO ailerons.

Never apply power when recovering from a stall if the nose is pointed below the horizon!  That could just accelerate you into the ground at a low altitude.

Types of Stalls:
1.       Power-On.
2.       Power-Off.
3.       Secondary stall.
4.       Imminent stall.
5.       Accelerated stall.

Power-Off stalls are normally practiced as normal landing approach conditions in simulation of an accidental stall occurring during landing approaches.  They should be practiced with multiple flap settings.  Try to be at normal approach speed (80 mph) before initiating entry.

Practice Power-On stalls at various flaps and power settings, including full power.

Secondary Stall – Happens when you make an incomplete or improper recovery from a stall, perhaps by pulling back too hard.  To avoid, don’t pull up during stall recovery until the aircraft has reached at least the best rate of climb speed (88 mph), before slowly raising pitch.

Imminent Stall – The airplane is approaching a stall but is not allowed to completely stall.

Airplanes can go into a stall at higher-than-normal airspeeds when excessive loads are imposed by abrupt or strong manoeuvres.

Mushing – Falling to the ground (like a leaf) with insufficient airflow over the wings to create lift.

Falling Leaf Exercise:
-          Enter the stall, allow it to continue by holding the control column aft.
-          Let the airplane mush.
-          Careful rudder work is necessary to prevent wing drop.
-          Airplane will oscillate in pitch as it tries to recover.
-          Do this with an instructor.

Things that affect stall speed:
1.       Weight and balance.
2.       Power.
3.       Flaps.
4.       Bank angle.
5.       Aircraft condition.
6.       Retractable landing gear.

Common errors:
-          Forgetting the CALL or HASEL check.
-          Not even stalling.
-          Holding the control column back during the stall.
-          Pushing too hard forward.
-          Entering a secondary stall.
-          Stepping on the wrong rudder.
-          Touching the aileron during a wing drop.  This is the biggest problem.
-          Exceeding VFE in a dive with the flaps extended.

The biggest problem is using the ailerons to counter wing drop.  You must learn to do it hands-off, and react with the rudder only.


Spins

Spin – A stall that has been aggravated by yaw.  This results in an “autorotation” where the plane follows a corkscrew path (60o of nose down attitude) in a downward direction.

In a spin, the wings are producing some lift and the airplane is forced downward by gravity, wallowing and yawing in a spiral path.  This pattern results from the fact that one wing is more stalled than the other.

There is no practical application for a spin in normal flight.  The only reasons we practice them are for recognition, avoidance, and recovery.

Three Stages of a Spin:
1.       Incipient stage
2.       Fully Developed stage
3.       Recovery stage

How to Enter a Spin:
1.       CALL check or HASEL check.
2.       Carb heat hot.
3.       Power to idle.
4.       Gradually apply full back pressure on elevator.
5.       Go full rudder left or right, just as the aircraft stalls.
6.       Keep the control column fully aft, plus full rudder.

If you partially relax either input in step six, your spin may turn into a spiral dive!

A Cessna is very stable and resistant to entering a spin.  You really have to screw up to enter a spin by mistake.

Characteristics During a Spin:
-          Can be quite disorienting.
-          Aircraft will be in a sixty degree nose down attitude, rotating around its vertical axis.
-          You’ll probably see all ground through the windshield, no sky.
-          Airspeed will read as low, but not below the stall.
-          Altimeter shows descending altitude.
-          Gyros may topple due to excessive rotation on multiple axis.
-          Inclinometer ball is useless.
-          The low wing in the turn coordinator shows the direction of the spin.

Ironically, for many airplanes, if you let go of the controls, the airplane will recover on its own.  You should still learn proper recovery procedures for safety.

How to Recover from a Spin:
1.       Relax.
2.       Power to idle.
3.       Ailerons neutral.
4.       Ensure flaps retracted.
5.       Full opposite rudder.
6.       Gentle forward pressure on the control column.
7.       Hold until auto rotation stops.
8.       Neutralize rudder.
9.       Roll wings level using ailerons.
10.   Ease out of the resulting dive.

External Factors:
-          Power On makes a spin flatter and faster.
-          Flaps make a spin flatter, and can result in structural damage.
-          CG location:  Aft is bad as it makes it harder to recover.
-          Higher weight increases the spin’s inertia.

The most likely way to enter a spin accidentally would be by turning with too much bank using rudder only, on the turn to final.  It could also happen during an improper overshoot or an improper departure procedure.

Common Spin Practice errors:
1.       Not stalling, which leads to a spiral.
2.       Wrong way rudder.
3.       Not releasing the back pressure.
4.       Not relaxing the rudder pressure as the rotation stops.
5.       Leaving the flaps down.


Spiral Dives

Spiral Dive – A steep descending turn in which the airspeed, rate of descent, and wing loading increase rapidly.  Far more dangerous than a spin.

We learn about spiral dives and practice them for recognition, avoidance, and recovery.  This is a flight test item.

Never enter a spiral intentionally while solo!  It’s too dangerous.  You should only do it when the instructor is with you and has initiated the dive.

Accidental Entry:
1.       A steep turn where the nose is allowed to drop excessively.
2.       An attempted spin where the airplane didn’t actually enter the spin, but the nose was allowed to drop and the airspeed built up.
3.       When busy in the cockpit with other chores.
4.       When becoming disoriented during instrument flying.
5.       After losing the vacuum instruments.

Characteristics:
-          Airspeed rapidly increasing.
-          High rate of descent.
-          Steep bank angle.

A plane in a spiral may descend as quickly as 18,000 feet/minute.

Recovery:
1.       Throttle to idle.
2.       Wings level.  Aileron IS allowed, because you’re flying.
3.       Ease out of the dive.
Each of these steps must be completed separately and promptly.

Common Errors:
1.       Adding power, which is really dumb.  You’re flying at the ground.  You don’t want to speed up.
2.       Not using three separate motions for recovery.  The three steps can NOT be combined.


Slips

Slip – The aircraft is placed in a banked attitude, but its tendency to turn is controlled with the rudder.  The turn is then halted.

Why learn slips?
1.       Counteract the effect of drift that is caused by a crosswind during landing.
2.       Increase the rate of descent without increasing the airspeed.
3.       Used to align with something.
4.       It’s a flight test item.

Types of Slips:
1.       Side Slip.
2.       Forward Slip.
3.       Slipping Turn (a type of forward slip).

Side Slip:
-          Useful to stay lined up with a particular direction of motion (ie. the runway centerline) during a cross wind.
-          The longitudinal axis of the plane stays in line with the target.

Entering a Side Slip:
1.       Lower a wing and apply just enough opposite rudder to prevent a turn.
2.       The airplane’s longitudinal axis remains parallel to the original flight path, but the airplane no longer flies “straight ahead.”
3.       From behind, it looks as if the airplane is aimed straight at the runway, but the plane has rolled partway.
4.       The aircraft will be in a banked attitude as shown on the turn coordinator, but not turning.
5.       The airspeed indicator and altimeter will have errors due to the position of the static port.

Forward Slip:
-          One in which the airplane’s direction of motion continues the same as before the slip was begun.
-          Assuming that the airplane is originally in a straight flight, the wing on the side toward which the slip is to be made should be lowered by use of the ailerons.
-          Simultaneously, the airplane’s nose must be yawed in the opposite direction by applying opposite rudder.  This means that the longitudinal axis is at an angle to its original flight path.

Entering a Forward Slip:
1.       Use ailerons to bank into the wind.
2.       Apply opposite rudder to prevent a turn.
3.       Adjust the pitch gently forward to maintain the original attitude.  The airspeed will have an error, so fly the attitude.
4.       Stay in line with the runway centerline by adjusting aileron.
5.       Be prepared to pitch your nose down slightly.

If you’re having problems distinguishing the two slips, remember the “opposites” rule:  a pilot “faces” to the side in a forward slip, and forward in a side slip.

Recovering from a slip:
1.       Release the rudder pressure.
2.       Simultaneously level the wings.
3.       Adjust pitch and trim.

Slip vs. Skid:
-          In a slipping turn, the tail of the airplane and the ball of the inclinometer are on the inside of the turn.
-          In a skidding turn, the tail and the ball are on the outside of the turn.
-          Skids can lead to spins, especially when descending.  Very bad!

Slipping Turn – Put yourself into either a side slip or a forward slip, then add just a little bit of aileron.

Common Errors:
-          Entering a skid.
-          Changing the pitch attitude.  Remember that the airspeed indicator is lying to you.
-          Showing/doing the wrong type of slip.
-          Slipping the wrong way.  It’s best to have the low wing into the wind.

Slips feel strange to passengers, so it might be nice to warn them in advance.


Takeoffs

Takeoffs are always optional.  You may have less discretion with a landing though.

Takeoff – The transition from taxiing to flying.  It includes the activities immediately before and after liftoff.

Take off as nearly into the wind as possible, if it’s a normal takeoff.

Benefits of taking off into the wind:
-          Shorter ground roll, so less runway is required.
-          Lower ground speed after liftoff.
-          Steeper climb rate, so better for clearing obstacles.
-          Lack of side drift and shorter takeoff roll means less wear and stress on wheels and landing gear.
-          Greater directional control.
-          Proper circuit procedures will be followed.

If the speed of the wind at ground level is greater than the aircraft’s stalling speed, a parked airplane will fly on its own.  Never forget the tie-downs.


Procedures for Takeoff:
1.       Ensure preflight checks are complete.
2.       Have a Go/No-Go point ready.
3.       Do you know emergency procedures?
4.       Flaps?  Either none or 10o.  Beyond 10o, the flaps create more drag than lift.
5.       Know wind speed and direction.  Know what this translates into as a head wind and a cross wind.  Check the wind sock to verify your METAR and ATIS info.
6.       Check traffic.
7.       Align aircraft with runway center line.
8.       Control column neutral, although perhaps ailerons set for crosswind.
9.       Applying throttle fully but smoothly, not too abruptly.
10.   Right rudder may be required.
11.   Rotate around 60mph (Cessna 172).  Do it gently.  Let the airplane go up on its own.
12.   Climb, establishing an attitude that gives you about 88mph (Cessna 172).
13.   Retract flaps when safe.
14.   Climb straight ahead to 500’ AGL.

For a Go/No-Go point, one rule that may be useful is the 70/50 guideline.  If you don’t have at least 70% of your required takeoff speed by the middle of the runway length, you should abort.

Air density is affected by pressure, temperature, and humidity.  Think of it this way:  Height, heat, and humidity make it harder to take off.

Lift and drag vary directly with the density of the air.

The density of air at 18,000 feet is half that of sea level.


Crosswind Takeoffs

Crosswind Takeoff – Any time the wind blows at any angle that crosses the runway.

Make sure you maintain a straight path down the runway centerline.

Challenges affecting Directional Control:
1.       Weather-cocking (Keel Effect) – airplane wants to swing into the wind.
2.       Dihedral – shape of wing.
3.       Windward Wing – has more airflow, making it want to lift.
4.       Sideways Drift – from wind pushing against fuselage.

Keel Effect – Airplane has more surface area behind the main wheels than ahead of them, causing the airplane to yaw into the wind.  You’ll need to counter with some opposite rudder.

Positive Dihedral – The “into wind” wing will have a greater angle of attack than the other wing, which generates lift and rolls the plane.  Use some aileron to counter.  Focus here on the shape of the wing being the cause.

Windward Wing Airflow – The “into wind” wing will have more airflow because it isn’t blocked by the fuselage.  This also lifts the wing and rolls the plane, so add aileron.  Focus here on the fuselage as a wind blocker to one wing.

Sideways Drift – As well as wanting to rotate the plane, the wind tends to push the entire plane sideways, putting strain on the landing gear.  This will be partially offset with the proper amount of aileron input.

Crosswind Takeoff Procedures:
1.       Try to take off into the prevailing winds.
2.       Have ailerons fully deflected into the wind.
3.       Slowly reduce aileron deflection to neutral as you build speed on the takeoff roll.
4.       Apply rudder as needed to stay on the runway centerline.
5.       Go for a slightly more abrupt and definitive liftoff than usual, and at a slightly higher speed (perhaps 65 mph in a Cessna 172).
6.       Don’t let the aircraft settle back onto the runway.
7.       Crab into the wind after liftoff to keep the flight path aligned with the runway centerline.

Try to avoid using flaps on a crosswind takeoff.

Crosswind components are determined by the sine of the angle of degrees deflection.  To simplify, use the following chart:

                00o wind angle = 00.0% crosswind component
                10o wind angle = 17.4% crosswind component
                20o wind angle = 34.2% crosswind component
                30o wind angle = 50.0% crosswind component
                40o wind angle = 64.3% crosswind component
                50o wind angle = 76.6% crosswind component
                60o wind angle = 86.6% crosswind component
                70o wind angle = 94.0% crosswind component
                80o wind angle = 98.5% crosswind component
                90o wind angle = 100% crosswind component

An even more basic and approximate guide is this:  Use the “minute hand of a clock” as a percentage rule, which works pretty well as a rough guide.  Ie. for 10 degrees use 10 minutes, which is 1/6th of an hour, or about 17 percent.  For 15 degrees use 15 minutes which is 1/4th of an hour, or about 25 percent.  For 30 degrees use 30 minutes which is ½.  For 45 degrees use 45 minutes which is ¾.  Above that use 90%.

In the absence of a published number, all aircraft must be certified to a minimum of 20% of the stall speed for a crosswind limitation.

Common errors on Crosswind Takeoff:
-          No control inputs at all.
-          Too much or not enough aileron down into the wind.
-          Too much or not enough rudder to stay lined up with the centerline.
-          Weak liftoff that results in settling back down onto the runway.
-          Not crabbing properly to maintain a straight track after takeoff.


Landing

Landing – The transition from flying to settling down safely on the runway, including the approach.

Three phases:
-          Approach.
-          Level Off.
-          Flare.

One of the keys to a good landing is a stable approach.  It’s best to have everything (power, attitude/speed, flaps, trim) set up well before final.  Try to have it set up by “half base.”

Steps to follow when about to turn base:
1.       Carb heat hot.
2.       Power back to 1500.
3.       Pitch up a bit (close to cruise).
4.       Trim down three times.
5.       Pitch to 80 mph.
6.       Flaps, if necessary.

If you feel a bit low on base, simply add a touch of power.  It’s easier to add a bit of power when low than to quickly shed altitude.

Three solutions when Approach is High:
-          Reduce power.
-          Add flaps.
-          Forward slip.

Bloom Effect – When the threshold area seems to rapidly expand, and many suddenly get the feeling that the ground is suddenly approaching so rapidly that something must be done about it.

Control in the Flare:
-          Rudders keep you pointed the right way.
-          Ailerons keep you from drifting.

Steps for Landing:
1.       Power to 1500 rpm, slow down.
2.       Flaps, if required.
3.       Trim.
4.       Turn final, align with runway.
5.       Establish a glide path to the runway.
6.       Keep airplane in trim to the flare (try not to touch trim on final though, should have been set properly in base).
7.       Reduce power to idle once runway is ensured.
8.       Flare, but not too abruptly!  You should level out and float for a bit, and flare once you start to sink.

Recovery from a Bounce or Balloon:
1.       Maintain the landing attitude.
2.       When starting to settle again, add a bit of power if necessary.
3.       If it’s bad, add power and overshoot.  If you do this, avoid excessive pitch up.

Types of Training Approaches:
1.       Low & Over.
2.       Stop & Go.
3.       Touch & Go.
4.       Overshooting.

Low & Over – A normal approach, but instead of flaring and then landing, power will be added to maintain approximately flaring height.  Good practice for approaches without actually landing.

Stop & Go – Aircraft will come to a complete stop, then after a brief pause, the takeoff will be initiated from the same position.

Touch & Go – Normal approach and landing, but then add power and take off again without stopping.  This exercise allows the most practice takeoffs and landings in an hour.

Overshoot – Start your approach, but instead of landing, add power and climb out.

Overshoot Procedures:
1.       Full power, smoothly not abruptly.
2.       Carb heat cold.
3.       Go to climb attitude.
4.       Retract flaps if they are set to more than ten degrees.
5.       Don’t climb above circuit height.

Learn to always keep your right hand on the throttle during landings and takeoffs.  You can fly with just your left hand on the control column.


Crosswind Landings

A crosswind landing is a landing with wind coming from any side.  It is harder than a crosswind takeoff because the aircraft is becoming less controllable as it slows down, rather than more controllable.

Be aware that the winds may be a different direction and strength upon landing than when you took off, even when doing circuits.

Main Crosswind Landing Techniques:
1.       Crab & Kick.
2.       Slipping (also called Wing Low).
3.       Combination.

Crab Method – Crab into the wind with wings perfectly level so the airplane’s ground track remains aligned with the centerline of the runway.  Straight out with a rudder kick at the last second.  After the rudder kick, bank slightly into the wind with the ailerons, to stop the rolling tendency from the rudder input.  Airspeed should be slightly higher than for normal landings.

As a student/learning pilot, the crab landing is not the safest or easiest option.  The kick needs to be perfectly timed.

Wing Low – Touching down in a side slip.  The pilot aligns the airplane’s heading with the centerline of the runway, notes the rate and direction of drift, then promptly applies drift correction by lowering the upwind wing.  Drift is controlled with aileron, and heading with rudder.

Once you touch down with wing low, don’t release control inputs.  You’ll be slowing down, which means that controls become less responsive, so you actually have to start increasing aileron.  Remember that when taxiing with a crosswind, you deflect the ailerons fully.

In a long final, it may be beneficial to do a crab until just before the roundabout is started, and then smoothly change to a sideslip for the remainder of the landing.

In a strong crosswind, the plane would obviously have to be banked quite steeply, which of course means heavy rudder.  Some airplanes might not be technically capable of that much rudder.  If full opposite rudder will not prevent a turn, the wind is too strong to safely land the airplane on that particular runway with those wind conditions.

If crosswinds are too strong for a safe landing, and no alternate runways are available, it might even be necessary to go to an alternate airport.

Flaps can and should be used during most approaches since they tend to have a stabilizing effect on the airplane.  However, you would typically use less flaps with a crosswind.  Full flaps may be used as long as the crosswind component is not in excess of the airplane’s capability, or unless the manufacturer recommends otherwise.

Ground Roll:
-          Pay close attention while rolling:  The rudder for steering is independent of the aileron being used to keep the wing low into the wind.
-          When the plane is airborne, it moves with the air mass in which it is flying, regardless of heading and speed.  On the ground, the friction of the wheels prevents that.
-          The airplane wants to weathercock into the wind because it has a greater profile or side area behind the main landing gear than forward of it.

CRFI – Canadian Runway Friction Index, gives the braking effectiveness of a surface.

At times, a surface covered with ice, snow, or water will not allow a safe landing.  Check a CFRI chart to determine the CRFI crosswind limits.  These can be independent of the plane’s maximum demonstrated crosswind component.

Common Errors during Crosswind Landings:
-          Attempting to land in crosswinds that exceed the airplane’s max demonstrated crosswind component.
-          Inadequate compensation for wind drift on the turn from base leg to final approach, resulting in undershooting or overshooting.
-          Inadequate compensation for wind drift on final approach.
-          Unstable approach.
-          Failure to compensate for increased drag during side slip, resulting in excessive sink rate and/or too low an airspeed.
-          Touchdown while drifting.
-          Overly excessive airspeed on touchdown.
-          Forgetting about increased distances.
-          Failure to use correct control inputs during rollout.
-          Letting go when you land (you need more control authority, not less, as you slow down).

Losing control in a cross wind is the most common landing accident.


Circuits

Circuit – The specified path to be flown in the vicinity of an aerodrome.

Circuit Features:
-          The circuit provides pilots with organization and standardization, like traffic rules.
-          A well flown circuit will lead to a stable approach.
-          The circuit incorporates climbs, cruise, and descents, so it’s where you’ll really learn to fly.
-          Left hand circuits are usually the international standard.
-          Typical circuit height is 1000 feet above ground level, although this can vary.  Always check the CFS.
-          Americans call the circuit “the pattern.”

Do a good lookout at each turn on the circuit.

Typical spacing between the runway and the downwind leg is about one mile.

Power settings (in an ideal world):
-          Full throttle on departure and crosswind.
-          2200 rpm on downwind.
-          1500 rpm upon turning base.

Radio calls at an Uncontrolled Airport:
1.       Shortly after airborne.
2.       When turning from departure onto circuit.
3.       On downwind.
4.       On final.
5.       When you have exited the runway.

Departing an Uncontrolled Circuit:
-          Leave the circuit, go any direction.  Probably not preferrable to go left (on a left hand circuit) in case there are arriving aircraft coming straight in downwind.
-          A turn back that goes toward the circuit should not be initiated until you’re at least 500 feet above aerodrome elevation.
-          Try to use the runway most closely aligned to being into the wind.

Joining an Uncontrolled Circuit:
-          From upwind side, funnel into a point where you can cross the airport at midfield and join the circuit on downwind (best option).
-          Can join straight in downwind if no conflict exists.
-          Can cross field if 500’ above circuit height, and then descend to circuit height, crossing back at that height to join the circuit.  If you follow this procedure, do your initial teardrop turn away from the wind, so the majority of your teardrop is then into the wind.

Joining the Circuit at an MF (Mandatory Frequency) Airport:
-          Aircraft may join the circuit straight in to downwind, 45o to downwind, or straight in to base or final.
-          Be alert for other VFR aircraft entering from any of these positions, or for IFR straight in or circling approaches.
-          You may have a FSS giving you information about weather and about traffic in the circuit.
-          Be careful because an aircraft could, against the rules, come into an MF airport with no radio.
-          If the MF airport has no advisory info available, treat it as an uncontrolled airport for joining the circuit.

No matter what type of airfield, if doing continuous circuits, you should always climb to circuit height after each takeoff before turning onto downwind.

At a controlled airport, there are a large number of ways to join the circuit, depending on what the controller tells you:
-          From the upwind funnel, crossing the field at circuit height, and joining downwind.
-          Straight in downwind.
-          45o onto downwind.
-          Straight in base.
-          Straight in final.

Never cross the aerodrome from the downwind side unless you are at least 500’ above the circuit.  Remember that aircraft could be crossing in the other direction at circuit height, to join the circuit.

If crossing from upwind to join the circuit, you should be at circuit height and also, you should join the downwind leg at a point abeam the midpoint of the active runway.

RONLY – Radio device with receive capabilities only.

NORDO/RONLY Arrivals:
-          At a controlled airport, approach the circuit from the upwind side only, join the crosswind at circuit height, then join the circuit on the downwind leg.
-          Know your PSTAR light signals.
-          Transponder code 7600.
-          You may be able to call the tower on a cell phone using the number published in the CFS.

If you are cleared by an ATC as “Cleared to the Circuit,” then you must join the downwind leg at circuit height, or possibly crosswind then downwind.

Common Errors during Circuits:
-          Not seeing or being aware of traffic.
-          Improper joining procedures.
-          Very tight spacing.
-          Very wide spacing.
-          Not on frequency.
-          Missing that a circuit is non-standard.
-          Not correcting for winds.



Conclusion

The topics included in a study of pre solo flight basics for aviation have a greater scope than I’ve covered here.  It would also be wise to spend quite a bit of time studying the various publications that I’ve linked to on this page:  http://www.djbolivia.ca/aviation.html

I have links there to several additional aviation-related publications.

Thanks for reading, I hope this was helpful to pilots in training.  If you find any errors in the above information, feel free to contact me at jonathan.scooter.clark@gmail.com

-          Jonathan Clark









Follow Jonathan Clark on other sites:
        Twitter: twitter.com/djbolivia
        SoundCloud: soundcloud.com/djbolivia
        YouTube: youtube.com/djbolivia
        Facebook: facebook.com/djbolivia
        Main Site: www.djbolivia.ca
        About.Me: about.me/djbolivia
        Music Blog: djbolivia.blogspot.ca
        MixCloud: mixcloud.com/djbolivia
        DropBox: djbolivia.ca/dropbox